Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.119
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38673925

The protective effects of hydrogen sulfide (H2S) against ischemic brain injury and its role in promoting angiogenesis have been established. However, the specific mechanism underlying these effects remains unclear. This study is designed to investigate the regulatory impact and mechanism of H2S on VEGFR2 phosphorylation. Following expression and purification, the recombinant His-VEGFR2 protein was subjected to LC-PRM/MS analysis to identify the phosphorylation sites of VEGFR2 upon NaHS treatment. Adenovirus infection was used to transfect primary rat brain artery endothelial cells (BAECs) with the Ad-VEGFR2WT, Ad-VEGFR2Y797F, and Ad-VEGFR2S799A plasmids. The expression of VEGFR2 and recombinant Flag-VEGFR2, along with Akt phosphorylation, cell proliferation, and LDH levels, was assessed. The migratory capacity and tube-forming potential of BAECs were assessed using wound healing, transwell, and tube formation assays. NaHS notably enhanced the phosphorylation of VEGFR2 at Tyr797 and Ser799 sites. These phosphorylation sites were identified as crucial for mediating the protective effects of NaHS against hypoxia-reoxygenation (H/R) injury. NaHS significantly enhanced the Akt phosphorylation, migratory capacity, and tube formation of BAECs and upregulated the expression of VEGFR2 and recombinant proteins. These findings suggest that Tyr797 and Ser799 sites of VEGFR2 serve as crucial mediators of H2S-induced pro-angiogenic effects and protection against H/R injury.


Endothelial Cells , Hydrogen Sulfide , Vascular Endothelial Growth Factor Receptor-2 , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Rats, Sprague-Dawley , Cell Hypoxia , Cell Proliferation/drug effects , Tyrosine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/metabolism , Serine/metabolism , Hypoxia/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674074

Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.


Chickens , Lung , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Chick Embryo , Lung/metabolism , Lung/embryology , Lung/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
3.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650036

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Lymphangioma, Cystic , Single-Cell Analysis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Lymphangioma, Cystic/genetics , Lymphangioma, Cystic/metabolism , Lymphangioma, Cystic/pathology , Female , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Sequence Analysis, RNA , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Transcriptome
4.
Circ Res ; 134(10): e112-e132, 2024 May 10.
Article En | MEDLINE | ID: mdl-38618720

BACKGROUND: The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS: Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS: The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS: Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.


Aorta, Thoracic , Endothelial Cells , Heart Defects, Congenital , T-Box Domain Proteins , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Mice , Aorta, Thoracic/embryology , Aorta, Thoracic/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Heart Defects, Congenital/embryology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation , Mice, Inbred C57BL
5.
J Int Med Res ; 52(3): 3000605241234558, 2024 Mar.
Article En | MEDLINE | ID: mdl-38518198

OBJECTIVE: To investigate the roles and underlying mechanisms of vascular endothelial growth factor receptor-3 (VEGFR-3) in gastric cancer (GC). METHODS: VEGFR-3 gene expression profiles in human gastric adenocarcinoma (GAC) tissues were analysed using The Cancer Genome Atlas database. Human GC cell lines and were used for in vitro studies. Mouse models of GC and distant metastasis were used for in vivo studies. Silencing of VEGFR-3 gene expression was achieved using small interfering RNA. RESULTS: VEGFR-3 gene expression was significantly elevated in GAC tissues and GC cells. Higher VEGFR-3 expression was positively correlated with more advanced stages and a greater number of metastatic lymph nodes. In vitro studies in GC cells showed that knockdown of VEGFR-3 gene expression significantly suppressed cell proliferation and migration, but promoted apoptosis. In vivo investigations revealed that silencing of VEGFR-3 gene expression exhibited significant inhibition on tumour growth and metastasis. Further mechanistic studies showed that VEGFR-3 exerted its pathological roles by affecting the key molecules in the apoptotic and epithelial-mesenchymal transition pathways. CONCLUSION: The molecular pathways associated with VEGFR-3-mediated pathological effects could be targets in the development of novel approaches for the diagnosis, prognosis and treatment of GC.


Stomach Neoplasms , Vascular Endothelial Growth Factor Receptor-3 , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Prognosis , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology , Vascular Endothelial Growth Factor Receptor-3/genetics
6.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504533

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Burns, Chemical , Corneal Neovascularization , Emodin , Humans , Mice , Animals , Corneal Neovascularization/drug therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Burns, Chemical/pathology , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Molecular Docking Simulation , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Signal Transduction , Human Umbilical Vein Endothelial Cells , Inflammation/drug therapy , Disease Models, Animal
7.
Nat Commun ; 15(1): 1346, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355851

Ligand-independent activation of VEGFRs is a hallmark of diabetes and several cancers. Like EGFR, VEGFR2 is activated spontaneously at high receptor concentrations. VEGFR1, on the other hand, remains constitutively inactive in the unligated state, making it an exception among VEGFRs. Ligand stimulation transiently phosphorylates VEGFR1 and induces weak kinase activation in endothelial cells. Recent studies, however, suggest that VEGFR1 signaling is indispensable in regulating various physiological or pathological events. The reason why VEGFR1 is regulated differently from other VEGFRs remains unknown. Here, we elucidate a mechanism of juxtamembrane inhibition that shifts the equilibrium of VEGFR1 towards the inactive state, rendering it an inefficient kinase. The juxtamembrane inhibition of VEGFR1 suppresses its basal phosphorylation even at high receptor concentrations and transiently stabilizes tyrosine phosphorylation after ligand stimulation. We conclude that a subtle imbalance in phosphatase activation or removing juxtamembrane inhibition is sufficient to induce ligand-independent activation of VEGFR1 and sustain tyrosine phosphorylation.


Endothelial Cells , Vascular Endothelial Growth Factor Receptor-1 , Endothelial Cells/metabolism , Ligands , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Signal Transduction/physiology , Cell Membrane/metabolism , Tyrosine/metabolism
8.
Commun Biol ; 7(1): 112, 2024 01 19.
Article En | MEDLINE | ID: mdl-38242992

Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.


Endoglin , Neuropilin-1 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Endoglin/genetics , Endoglin/metabolism , Endothelial Cells/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Signal Transduction
9.
Mol Genet Genomic Med ; 12(1): e2289, 2024 Jan.
Article En | MEDLINE | ID: mdl-37803932

INTRODUCTION: Pituitary adenomas (PA) are slow-growing, benign tumors that usually do not metastasize to other body organs. Although they are referred to as benign, tumor growth can eventually put pressure on nearby structures, spread to surrounding tissues, and cause symptoms. The exact cause of PA is unknown, and the pathogenesis is multifactorial. METHODS: Our study included PA patients and healthy volunteers. Genomic DNA was extracted using the DNA salting-out method. All participants were genotyped for the KDR rs2071559, rs1870377, CFH rs1061170, and rs1410996 polymorphisms. Serum levels of KDR and CFH were examined using the ELISA method. RESULTS: The results of the present study showed that KDR rs2071559 A allele was associated with the occurrence of PA, hormonally active PA, invasive PA, and PA without recurrence development. KDR rs1870377 increased the probability of invasive PA and PA recurrence. CFH rs1061170 C allele was associated with hormonally active PA and the T allele was associated with non-invasive PA development. CONCLUSION: KDR rs2071559, rs1870377, and CFH rs1061170 could be potential biomarkers associated with PA.


Genetic Predisposition to Disease , Pituitary Neoplasms , Humans , DNA , Genotype , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor Receptor-2/genetics
10.
Biochem Genet ; 62(1): 547-573, 2024 Feb.
Article En | MEDLINE | ID: mdl-37392242

Breast cancer is the most common type of cancer in Egyptian females. Polymorphisms in the angiogenesis pathway have been implicated previously in cancer risk and prognosis. The aim of the current study was to determine whether certain polymorphisms in the genes of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial growth inhibitor (VEGI), and hypoxia-inducible factor-1α (HIF1A) associated with breast cancer development. The study included 154 breast cancer patients and 132 apparently healthy age-matched females as a control group. VEGFA rs25648 genotyping was performed using (ARMS) PCR technique; while VEGFR2 rs2071559, VEGI rs6478106, and HIF-1α rs11549465 were genotyped by the PCR-RFLP method. Serum levels of VEGF, VEGFR2, VEGI, and HIF1A proteins in breast cancer patients and controls were measured by ELISA. There was a significant association between the VEGFA rs25648 C allele and breast cancer risk (OR 2.5, 95% CI 1.7-3.6, p < 0.001). VEGFA rs25648 C/C genotype was statistically significantly higher in breast cancer patients vs. control (p < 0.001). Participants with the T/T and T/C VEGFR2 rs2071559 genotypes had 5.46 and 5 higher odds, respectively, of having breast cancer than those with the C/C genotype. For the VEGI rs6478106 polymorphism, there was a higher proportion of C allele in breast cancer patients vs. control (p = 0.003). Moreover, the C/C genotype of VEGI rs6478106 was statistically significantly higher in breast cancer patients vs. control (p = 0.001). There was no significant difference in genotypes and allele frequencies of HIF1A rs11549465 polymorphism between breast cancer cases and control individuals (p > 0.05). Serum levels of VEGFA, VEGI, and HIF1A were considerably greater in women with breast cancer than in the control (p < 0.001). In conclusion, the genetic variants VEGFA rs25648, VEGFR2 rs2071559, and VEGI rs6478106 revealed a significant association with increased breast cancer risk in Egyptian patients.


Breast Neoplasms , Vascular Endothelial Growth Factor A , Female , Humans , Male , Blood Proteins/genetics , Breast Neoplasms/genetics , Case-Control Studies , Egypt , Genetic Predisposition to Disease , Genotype , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
11.
Sci Rep ; 13(1): 21957, 2023 12 11.
Article En | MEDLINE | ID: mdl-38081836

Rheumatoid arthritis (RA), is marked by joint inflammation leading to pannus formation which results in cartilage destruction promoting bone erosion. The pathological hallmark of RA includes synovial hyperplasia and synovial angiogenesis. Active tissue neovascularization is observed in RA. Vascular endothelial Growth factor A (VEGFA), an endothelial cell-specific proangiogenic molecule is triggered by hypoxic cells and its levels are upregulated in RA. The aim of this study was to investigate functional and pathogenic VEGFA variants and to identify the impact of point mutation in VEGFA's interaction with VEGFR2 and how these polymorphisms affect the susceptibility and severity of RA. We investigated impact of these point mutations on the stability of VEGFA using various computational tools. These mutations were further identified by conservational profile as they are highly involved as structural and functional mutations. Furthermore, these selected variants were modelled and docked against targeted domain regions IGD2 and IGD3 of VEGFR2. Further molecular dynamic simulations were performed using Gromacs. Out of 168 nsSNPS, 19 were highlighted as highly pathogenic using insilico prediction tools. InterPro and ConSurf revealed domains and conserved variants respectively. After stability analysis, we concluded that almost all the mutations were responsible for decreasing the protein stability. HOPE predicted that all the selected damaging nsSNPs were present in the domain which is essential for the functioning of VEGFA protein. Constructed Ramachandran plot and ERRAT validated the quality of all the models. Based on the interactions predicted by STRING database, we performed Protein-Protein docking between VEGFA and VEGFR2. We found few conserved interactions and new polar contacts among wild-type and mutants with VEGFR2. From the simulations, we concluded that mutant R108Q was the most stabilizing mutant among all others whereas R82Q, C86Y, and R108W complexed with VEGFR2 were comparatively less stabilizing as compared to the wild type. This study provides insight into pathogenic nsSNPs that can affect VEGFA protein structure and function. These high-risk variants must be taken into consideration for genetic screening of patients suffering from RA.


Arthritis, Rheumatoid , Vascular Endothelial Growth Factor A , Humans , Arthritis, Rheumatoid/genetics , Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics
12.
BMC Cancer ; 23(1): 1173, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036978

BACKGROUND: Angiogenesis is an important hallmark of Glioblastoma (GBM) marked by elevated vascular endothelial growth factor-A (VEGF-A) and its receptor 2 (VEGFR-2). As previously reported nimbolide (NBL), trans-chalcone (TC) and piperine (PPR) possess promising antiangiogenic activity in several cancers however, their comparative efficacy and mechanism of antiangiogenic activity in GBM against VEGFR-2 has not been elucidated. METHODS: 2D and 3D spheroids cultures of U87 (Uppsala 87 Malignant Glioma) were used for evaluation of non-cytotxoic dose for anti-angiogenic activity. The antiangiogenic effect was investigated by the GBM U87 cell line bearing chick CAM model. Excised U87 xenografts were histologically examined for blood vascular density by histochemistry. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the presence of avian and human VEGF-A and VEGFR-2 mRNA transcripts. RESULTS: Using 2D and 3D spheroid models, the non-cytotoxic dose of NBL, TC and PPR was ≤ 11 µM. We found NBL, TC and PPR inhibit U87-induced neoangiogenesis in a dose-dependent manner in the CAM stand-alone model as well as in CAM U87 xenograft model. The results also indicate that these natural compounds inhibit the expression of notable angiogenic factors, VEGF-A and VEGFR-2. A positive correlation was found between blood vascular density and VEGF-A as well as VEGFR-2 transcripts. CONCLUSION: Taken together, NBL, TC and PPR can suppress U87-induced neoangiogenesis via a reduction in VEGF-A and its receptor VEGFR-2 transcript expression at noncytotoxic concentrations. These phytochemicals showed their utility as adjuvants to GBM therapy, with Piperine demonstrating superior effectiveness among them all.


Chalcones , Glioblastoma , Humans , Glioblastoma/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor
13.
Bioorg Chem ; 141: 106910, 2023 12.
Article En | MEDLINE | ID: mdl-37871393

The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment. The gene expression of pro- and ant-apoptosis markers P53, Bax, Caspase-3 and Bcl-2 as well as VEGFR-2 and HER2 were determined. Compounds 13 and 15 induced upregulation of pro-apoptosis of P53, Bax, Caspase-3 and downregulation of anti-apoptosis Bcl-2 gene. However, compound 15 showed higher effect compared to 13 and respective control. Moreover, a slight reduction in HER2 gene expression was detected due to compound 15 treatment, while VEGFR-2 gene was upregulated. In agreement, the immunoblotting analysis showed higher accumulation of P53, Bax, Caspase-3 proteins and of decrease the Bcl-2 protein levels. Furthermore, docking studies united with molecular dynamic simulation exposed compounds 13 and 15 fitting in the middle of the active site at the interface linking the ATP binding site and the allosteric hydrophobic binding pocket. Finally, we performed Petra/Osiris/ Molinspiration (POM) analysis for the newly synthesized compounds. The evaluation of primary in silico parameters revealed significant differences among individual polyfunctionalized pyridine compounds, highlighting the most promising candidates. These preliminary results may help in coordinating and initiating other research projects focused on polyfunctionalized pyridine compounds, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.


Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Humans , Molecular Structure , Structure-Activity Relationship , Caspase 3/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Molecular Dynamics Simulation , Pyridines/pharmacology , Molecular Docking Simulation , Cell Proliferation , Drug Screening Assays, Antitumor
14.
Neuromolecular Med ; 25(3): 441-450, 2023 09.
Article En | MEDLINE | ID: mdl-37610648

Glioblastoma (GBM) is the most frequent tumor of the central nervous system, and its heterogeneity is a challenge in treatment. This study examined tumoral heterogeneity involving PDGFRA, KIT, and KDR gene amplification (GA) in 4q12 and its association with clinical parameters. Specimens from 22 GBM cases with GA for the 4q12 amplicon detected by FISH were investigated for homogeneous or heterogeneous coamplification patterns, diffuse or focal distribution of cells harboring GA throughout tumor sections, and pattern of clustering of fluorescence signals. Sixteen cases had homogenously amplification for all three genes (45.5%), for PDGFRA and KDR (22.7%), or only for PDGFRA (4.6%); six cases had heterogeneous GA patterns, with subpopulations including GA for all three genes and for two genes - PDGFRA and KDR (13.6%), or GA for all three and for only one gene - PDGFRA (9.1%) or KIT (4.6%). In 6 tumors (27.3%), GA was observed in focal tumor areas, while in the remaining 16 tumors (72.7%) it was diffusely distributed throughout the pathological specimen. Amplification was universally expressed as double minutes and homogenously stained regions. Coamplification of all three genes PDGFRA, KIT, and KDR, age ≥ 60 years, and total tumor resection were statistically associated with poor prognosis. FISH proved effective for detailed interpretation of molecular heterogeneity. The study uncovered an even more diverse range of amplification patterns involving the 4q12 oncogenes in GBM than previously described, thus highlighting a complex tumoral heterogeneity to be considered when devising more effective therapies.


Glioblastoma , Humans , Middle Aged , Central Nervous System , Chromosome Aberrations , Clinical Relevance , Gene Amplification , Glioblastoma/genetics , Receptor Protein-Tyrosine Kinases , Vascular Endothelial Growth Factor Receptor-2/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
15.
Leuk Lymphoma ; 64(13): 2165-2177, 2023 Dec.
Article En | MEDLINE | ID: mdl-37647140

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and dependent on angiogenesis (AG), whose main effectors are VEGFA and VEGFR2. Functional single nucleotide variants (SNVs) are described in VEGFA and KDR genes. However, it still unknown whether VEGFA - 2578C/A, -2489C/T, -1154G/A, -634G/C, -460C/T and KDR-604T/C, -271G/A, +1192G/A and +1719A/T SNVs act on DLBCL risk and angiogenic features. Genomic DNA from 168 DLBCL patients and 205 controls was used for SNV genotyping. Angiogenesis was immunohistochemically assessed in tumor biopsies, with reactions for VEGFA, VEGFR2, and CD34. VEGFA -1154GG genotype were associated with 1.6-fold higher DLBCL risk. KDR + 1192GG plus KDR + 1719 TT and KDR + 1192GG plus VEGFA - 2578CC combined genotypes are associated with 2.19- and 2.04-fold higher risks of DLBCL, respectively. VEGFA - 634GG or GC genotypes are associated with increased microvessel density and VEGFA levels. No relationship was observed between SNVs and cell-of-origin classification of DLBCL, but higher VEGFA and VEGFR2 were seen in non-germinal center tumors.


Genetic Predisposition to Disease , Lymphoma, Large B-Cell, Diffuse , Humans , Polymorphism, Single Nucleotide , Genotype , Lymphoma, Large B-Cell, Diffuse/genetics , Nucleotides , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
16.
J Clin Invest ; 133(20)2023 10 16.
Article En | MEDLINE | ID: mdl-37651195

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Capillary Permeability , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Capillary Permeability/genetics , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , CSK Tyrosine-Protein Kinase/metabolism
17.
Microbes Infect ; 25(8): 105188, 2023.
Article En | MEDLINE | ID: mdl-37499788

The COVID-19 pandemic has affected people worldwide with varying clinical presentations ranging from mild to severe or fatal, and studies have found that age, gender, and some comorbidities can influence the severity of the disease. It would be valuable to have genetic markers that might help predict the likely outcome of infection. For this objective, genes encoding VEGFR-2 (rs1870377), CCR5Δ32 (rs333), and TLR3 (rs5743313) were analyzed for polymorphisms in the peripheral blood of 160 COVID-19 patients before COVID-19 vaccine was available in Türkiye. We observed that possession of the VEGFR-2 rs1870377 mutant allele increased the risk of severe/moderate disease in females and subjects ≥65 years of age, but was protective in males <65 years of age. Other significant results were that the CCR5Δ32 allele was protective against severe disease in subjects ≥65 years of age, while TLR3 rs5743313 polymorphism was found to be protective against severe/moderate illness in males <65 years of age. The VEGFR-2 rs1870377 mutant allele was a risk factor for severe/moderate disease, particularly in females over the age of 65. These findings suggest that genetic polymorphisms have an age- and sex-dependent influence on the severity of COVID-19, and the VEGFR-2 rs1870377 mutant allele could be a potential predictor of disease severity.


COVID-19 , Polymorphism, Single Nucleotide , Aged , Female , Humans , Male , COVID-19/genetics , COVID-19 Vaccines , Disease Progression , Genetic Predisposition to Disease , Pandemics , Toll-Like Receptor 3 , Vascular Endothelial Growth Factor Receptor-2/genetics
18.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L299-L313, 2023 09 01.
Article En | MEDLINE | ID: mdl-37310763

Pulmonary angiogenesis drives alveolarization, but the transcriptional regulators directing pulmonary angiogenesis remain poorly defined. Global, pharmacological inhibition of nuclear factor-kappa B (NF-κB) impairs pulmonary angiogenesis and alveolarization. However, establishing a definitive role for NF-κB in pulmonary vascular development has been hindered by embryonic lethality induced by constitutive deletion of NF-κB family members. We created a mouse model allowing inducible deletion of the NF-κB activator, IKKß, in endothelial cells (ECs) and assessed the effect on lung structure, endothelial angiogenic function, and the lung transcriptome. Embryonic deletion of IKKß permitted lung vascular development but resulted in a disorganized vascular plexus, while postnatal deletion significantly decreased radial alveolar counts, vascular density, and proliferation of both endothelial and nonendothelial lung cells. Loss of IKKß impaired survival, proliferation, migration, and angiogenesis in primary lung ECs in vitro, in association with decreased expression of VEGFR2 and activation of downstream effectors. Loss of endothelial IKKß in vivo induced broad changes in the lung transcriptome with downregulation of genes related to mitotic cell cycle, extracellular matrix (ECM)-receptor interaction, and vascular development, and the upregulation of genes related to inflammation. Computational deconvolution suggested that loss of endothelial IKKß decreased general capillary, aerocyte capillary, and alveolar type I cell abundance. Taken together, these data definitively establish an essential role for endogenous endothelial IKKß signaling during alveolarization. A deeper understanding of the mechanisms directing this developmental, physiological activation of IKKß in the lung vasculature may provide novel targets for the development of strategies to enhance beneficial proangiogenic signaling in lung development and disease.NEW & NOTEWORTHY This study highlights the cell-specific complexity of nuclear factor kappa B signaling in the developing lung by demonstrating that inducible loss of IKKß in endothelial cells impairs alveolarization, disrupts EC angiogenic function, and broadly represses genes important for vascular development.


I-kappa B Kinase , NF-kappa B , Animals , Mice , Endothelial Cells/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Lung/metabolism , Neovascularization, Physiologic/genetics , NF-kappa B/metabolism , Pulmonary Alveoli/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Int J Exp Pathol ; 104(5): 258-268, 2023 10.
Article En | MEDLINE | ID: mdl-37381118

Haemangiomas (HAs) are prevalent vascular endothelial cell tumours. With respect to the possible involvement of HIF-1α in HAs, we have explored its role in haemangioma endothelial cell (HemEC) proliferation and apoptosis. shRNA HIF-1α and pcDNA3.1 HIF-α were manipulated into HemECs. HIF-α, VEGF, and VEGFR-2 mRNA and protein levels were assessed by qRT-PCR and Western blotting. Cell proliferation and viability, cell cycle and apoptosis, migration and invasion, and ability to form tubular structures were assessed by colony formation assay, CCK-8, flow cytometry, Transwell assay, and tube formation assay. Cell cycle-related protein levels, and VEGF and VEGFR-2 protein interaction were detected by Western blot and immunoprecipitation assays. An Haemangioma nude mouse model was established by subcutaneous injection of HemECs. Ki67 expression was determined by immunohistochemical staining. HIF-1α silencing suppressed HemEC neoplastic behaviour and promoted apoptosis. HIF-1α facilitated VEGF/VEGFR-2 expression and the VEGF had interacted with VEGFR-2 at protein - protein level. HIF-1α silencing arrested HemECs at G0/G1 phase, diminished Cyclin D1 protein level, and elevated p53 protein level. VEGF overexpression partially abrogated the effects of HIF-1α knockdown on inhibiting HemEC malignant behaviours. Inhibiting HIF-1α in nude mice with HAs repressed tumour growth and Ki67-positive cells. Briefly, HIF-1α regulated HemEC cell cycle through VEGF/VEGFR-2, thus promoting cell proliferation and inhibiting apoptosis.


Endothelial Cells , Hemangioma , Mice , Animals , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology , Mice, Nude , Ki-67 Antigen , Cell Line, Tumor , Apoptosis , Hemangioma/pathology , Cell Proliferation
20.
J Cell Sci ; 136(10)2023 05 15.
Article En | MEDLINE | ID: mdl-37226882

Vascular endothelial growth factor receptor 2 (VEGFR2, encoded by KDR) regulates endothelial function and angiogenesis. VEGFR2 undergoes ubiquitination that programs this receptor for trafficking and proteolysis, but the ubiquitin-modifying enzymes involved are ill-defined. Herein, we used a reverse genetics screen for the human E2 family of ubiquitin-conjugating enzymes to identify gene products that regulate VEGFR2 ubiquitination and proteolysis. We found that depletion of either UBE2D1 or UBE2D2 in endothelial cells caused a rise in steady-state VEGFR2 levels. This rise in plasma membrane VEGFR2 levels impacted on VEGF-A-stimulated signalling, with increased activation of canonical MAPK, phospholipase Cγ1 and Akt pathways. Analysis of biosynthetic VEGFR2 is consistent with a role for UBE2D enzymes in influencing plasma membrane VEGFR2 levels. Cell-surface-specific biotinylation and recycling studies showed an increase in VEGFR2 recycling to the plasma membrane upon reduction in UBE2D levels. Depletion of either UBE2D1 or UBE2D2 stimulated endothelial tubulogenesis, which is consistent with increased VEGFR2 plasma membrane levels promoting the cellular response to exogenous VEGF-A. Our studies identify a key role for UBE2D1 and UBE2D2 in regulating VEGFR2 function in angiogenesis.


Endothelial Cells , Ubiquitin-Conjugating Enzymes , Humans , Ubiquitin-Conjugating Enzymes/genetics , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2/genetics , Ubiquitination
...